MEME: discovering and analyzing DNA and protein sequence motifs

نویسندگان

  • Timothy L. Bailey
  • Nadya Williams
  • Chris Misleh
  • Wilfred W. Li
چکیده

MEME (Multiple EM for Motif Elicitation) is one of the most widely used tools for searching for novel 'signals' in sets of biological sequences. Applications include the discovery of new transcription factor binding sites and protein domains. MEME works by searching for repeated, ungapped sequence patterns that occur in the DNA or protein sequences provided by the user. Users can perform MEME searches via the web server hosted by the National Biomedical Computation Resource (http://meme.nbcr.net) and several mirror sites. Through the same web server, users can also access the Motif Alignment and Search Tool to search sequence databases for matches to motifs encoded in several popular formats. By clicking on buttons in the MEME output, users can compare the motifs discovered in their input sequences with databases of known motifs, search sequence databases for matches to the motifs and display the motifs in various formats. This article describes the freely accessible web server and its architecture, and discusses ways to use MEME effectively to find new sequence patterns in biological sequences and analyze their significance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Value of Prior Knowledge in Discovering Motifs with MEME

MEME is a tool for discovering motifs in sets of protein or DNA sequences. This paper describes several extensions to MEME which increase its ability to find motifs in a totally unsupervised fashion, but which also allow it to benefit when prior knowledge is available. When no background knowledge is asserted. MEME obtains increased robustness from a method for determining motif widths automati...

متن کامل

MEME Suite: tools for motif discovery and searching

The MEME Suite web server provides a unified portal for online discovery and analysis of sequence motifs representing features such as DNA binding sites and protein interaction domains. The popular MEME motif discovery algorithm is now complemented by the GLAM2 algorithm which allows discovery of motifs containing gaps. Three sequence scanning algorithms--MAST, FIMO and GLAM2SCAN--allow scannin...

متن کامل

MEME-ChIP: motif analysis of large DNA datasets

MOTIVATION Advances in high-throughput sequencing have resulted in rapid growth in large, high-quality datasets including those arising from transcription factor (TF) ChIP-seq experiments. While there are many existing tools for discovering TF binding site motifs in such datasets, most web-based tools cannot directly process such large datasets. RESULTS The MEME-ChIP web service is designed t...

متن کامل

Discovering Protein Function Classification Rules from Reduced Alphabet Representations of Protein Sequences

The paper explores the use of reduced alphabet representations of protein sequences in the data-driven discovery of data-driven discovery of sequence motif-based decision trees for classifying protein sequences into functional families. A number of alternative representations of protein sequences (using a variety of reduced alphabets based on groupings of amino acids in terms of their physico -...

متن کامل

Finding DNA Motifs: A Probabilistic Suffix Tree Approach

We address the problem of de novo motif identification. That is, given a set of DNA sequences we try to identify motifs in the dataset without having any prior knowledge about existence of any motifs in the dataset. We propose a method based on Probabilistic Suffix Trees (PSTs) to identify fixed-length motifs from a given set of DNA sequences. Our experiments reveal that our approach successful...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic Acids Research

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2006